
Potential Based Diffusion Motion Planning

Yunhao Luo 1 Chen Sun 1 Joshua B. Tenenbaum 2 Yilun Du 2

Abstract

Effective motion planning in high dimensional
spaces is a long-standing open problem in
robotics. One class of traditional motion plan-
ning algorithms corresponds to potential-based
motion planning. An advantage of potential based
motion planning is composability – different mo-
tion constraints can be easily combined by adding
corresponding potentials. However, construct-
ing motion paths from potentials requires solv-
ing a global optimization across configuration
space potential landscape, which is often prone
to local minima. We propose a new approach to-
wards learning potential based motion planning,
where we train a neural network to capture and
learn an easily optimizable potentials over motion
planning trajectories. We illustrate the effective-
ness of such approach, significantly outperform-
ing both classical and recent learned motion plan-
ning approaches and avoiding issues with local
minima. We further illustrate its inherent compos-
ability, enabling us to generalize to a multitude
of different motion constraints. Project website
at https://energy-based-model.github.io/potential-
motion-plan.

1 Introduction
Motion planning is a fundamental problem in robotics and
aims to find a smooth, collision free path between a start
and goal state given a specified configuration space, and is
heavily used across a variety of different robotics tasks such
as manipulation or navigation (Laumond et al., 1998). A va-
riety of approaches exist for motion planning, ranging from
classical sampling based approaches (Kavraki et al., 1996;
Kuffner & LaValle, 2000; Karaman & Frazzoli, 2011; Gam-
mell et al., 2015) and optimization based methods (Ratliff
et al., 2009; Mukadam et al., 2018; Kalakrishnan et al.,

1Brown University 2MIT. Correspondence to: Yunhao Luo
<yluo73@cs.brown.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Energy A Energy B Energy A + B

Figure 1: Illustrative Example of Composing Diffusion Energy
Potentials. Our approach learns different potential functions over
motion planning trajectories q1:N (orange dashed lines). Different
potentials can be combined and optimized to construct new motion
plans that avoid obstacles encoded in both potential functions.

2011). A recent body of works have further explored how
learned neural networks can be integrated with motion plan-
ning for accelerated performance (Ichter & Pavone, 2019;
Qureshi et al., 2019; Fishman et al., 2023; Yamada et al.,
2023; Le et al., 2023).

A classical approach towards motion planning is potential
based motion planning (Khatib, 1986; Koren et al., 1991;
Ratliff et al., 2009; 2018; Xie et al., 2020), where both ob-
stacles and goals define energy potentials through which
trajectories are optimized to reach. An advantage of poten-
tial based motion planning is that different constraints to
motion planning can be converted into equivalent energy
potentials and directly combined to optimize for motion
plans. However, potential based methods rely on gradient
optimization with respect to local geometry, resulting in
the long-standing local minima issues (LaValle, 2006). In
addition, such motion planning techniques typically require
implicit obstacle representations, which is hard to obtain in
real-world settings.

We present a potential based motion planning approach
leveraging diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) where diffusion models are used to param-
eterize and learn potential landscapes across configuration
space trajectories between start and goal states. These poten-
tial functions can be directly inferred from raw perceptual
inputs, removing the need for implicit object representa-
tions. Furthermore, the annealed optimization procedure
across a sequence of potential energy landscapes in diffusion
models (Du et al., 2023) can help avoid local minima in opti-
mization. This optimization procedure is further stochastic,
enabling the planner to generate a multitude of motion plans
with diverse morphology for a specific problem, offering

1

https://energy-based-model.github.io/potential-motion-plan
https://energy-based-model.github.io/potential-motion-plan

Potential Based Diffusion Motion Planning

various motion plan candidates for selection in test time.
Finally, as our potential is defined globally over an envi-
ronment, it is guided by both local and global environment
geometry, and thus our method provides more accurate plans
that require significantly less collision checking, compared
with problem-independent sampling-based planners.

One major hurdle of learning-based motion planners is their
generalizability to environments with unseen, more complex
constraints. For example, a learned model trained on sparse
obstacles will perform poorly in scenarios with cluttered ob-
stacles, as such a setting is out of distribution. Our approach
addresses this through compositionality – our learned poten-
tials can be additively composed together to jointly solve
motion planning problems with larger sets of constraints
than seen at training time. As illustrated in Figure 1, combin-
ing two potentials from different diffusion models enables
us to optimize for trajectories that satisfy both constraints,
one to avoid obstacles in a cross, and a second to avoid
obstacles in a square. Such flexibility to ad-hoc composition
of constraints is especially useful in robotics where agents
will often experience new sets of motion constraints in its
environment over the course of execution.

Overall, in this paper, our contributions are three-fold. (1)
We present an approach to learned potential based motion
planning using diffusion models. (2) We illustrate the effec-
tiveness of our approach, outperforming existing classical
and learned motion planning algorithms in accuracy and
collision checks. (3) We illustrate the compositionality of
motion planner, enabling it to generalize to multiple sets
of motion constraints as well as an increased number of
objects.

2 Related Work
Motion Planning. Classic sampling-based motion plan-
ners (Kavraki et al., 1996; Kuffner & LaValle, 2000; Elban-
hawi & Simic, 2014; Gammell et al., 2014; Janson et al.,
2015; Choudhury et al., 2016; Strub & Gammell, 2020)
have gained wide adoption due to their efficiency and gener-
alizability. However, problem-independent nature of these
methods can result in inefficiency particularly when plan-
ning for similar problems repetitively. Reactive methods,
such as potential-based approaches (Khatib, 1986; Ratliff
et al., 2018; Xie et al., 2020), velocity obstacles (Fiorini &
Shiller, 1998; Van den Berg et al., 2008), and safety barrier
certificates (Wang et al., 2017) can provide fast updates and
have the guarantee for obstacle avoidance. However, their
performance is typically constrained by local minima or nu-
merical instability (LaValle, 2006), and they usually need to
construct obstacle representations in the robot configuration
space, which is hard to obtain from raw perception. To ad-
dress these issues, recent works have proposed many deep-
learning based motion planners (Ichter & Pavone, 2019;

Bency et al., 2019; Fishman et al., 2023). Other works com-
bine neural network with sampling-based methods (Qureshi
et al., 2019; Johnson et al., 2021; Yu & Gao, 2021; Lawson
& Qureshi, 2022), or combine trajectory level generative
models with specifically designed cost functions (Saha et al.,
2023; Carvalho et al., 2023) that requires privileged infor-
mation. These methods can increase planning speed, expand
the planning horizon, or reduce the access queries to the
environment by leveraging learned knowledge. However,
the performance of learned motion-planning approaches on
out-of-distribution environments often sharply degenerates.
In addition, many existing methods are only constrained
to simple 2D environments (Yonetani et al., 2021; Chaplot
et al., 2021; Toma et al., 2021; Chang et al., 2023; Carvalho
et al., 2022). In contrast, we present a learning-based po-
tential motion planning approach, requiring no ground truth
knowledge of the optimized cost objective, which we illus-
trate can effectively generalize to new environments through
composability of potentials.

Diffusion Models for Robotics. Many recent works have
explored the application of diffusion model for robotics (Jan-
ner et al., 2022; Chen et al., 2022; Kapelyukh et al., 2023;
Ha et al., 2023). Current research spans a variety of robotics
problems, including action sequence generation (Liang
et al., 2023; Fang et al., 2023; Li et al., 2023), policy (Wang
et al., 2023; Kang et al., 2023), grasping (Urain et al.,
2023; Huang et al., 2023), and visuomotor planning or
control (Dalal et al., 2023; Yang et al., 2023a; Chi et al.,
2023), with recent work also exploring their application
in solving manipulation constraints (Yang et al., 2023b).
In contrast to these works, we focus on how diffusion
models can be used to explicitly parameterize and learn
potentials in potential-based motion planning. We illustrate
the efficacy of such an approach across motion-planning
settings and its ability to generalize to new environments
through composition with other learned potentials.

3 Method
We first introduce potential based motion planning in Sec-
tion 3.1. We then discuss how potential based motion plan-
ning can be implemented with diffusion models in Sec-
tion 3.2. We further discuss how such an approach enables
us to combine multiple different potentials together in Sec-
tion 3.3. Following this, we discuss how we can refine
motion plans generated by diffusion models in cases of col-
lision in Section 3.4. Finally, we show the probabilistic
completeness of the proposed method in Section 3.5.

3.1 Potential Based Motion Planning

Given a specified start state qst and end state qe in a configu-
ration space Rn, motion planning is formulated as finding
a collision-free trajectory q1:N which starts from qst and

2

Potential Based Diffusion Motion Planning

S = 100 S = 0S = 80 S = 40 S = 20S = 60

Figure 2: Trajectory Denoising Process. The trajectory is randomly initialized from Gaussian in timestep S = 100. Noise is iteratively
removed via the gradient of the energy function as given in equation 5. A feasible trajectory can be obtained at timestep S = 0.

ends at qe. To solve for such a collision-free trajectory q1:N
in potential based motion planning (Khatib, 1986; Koren
et al., 1991), a potential function U(q) : Rn → R on the
configuration space composed of

U(q) = Uatt(q) + Urepel(q), (1)

is defined, where U(q) assigns low potential value to the
goal state qe and high potential to all states which are in col-
lision. In Equation 1, Uatt(q) represents a attraction potential
that has low values at the the end state qend and high values
away from it, and Urepel(q) represents a repulsion potential
that has high values near obstacles and low values away
them. The functional form of the potential function U(q)
provides an easy approach to integrate additional obstacles
in motion planning by adding a new potential Unew(q) rep-
resenting obstacles to the existing potential in Equation 1.

To obtain a motion plan from a potential function U(q),
a collision-free trajectory q1:N from qst to qe is obtained
by iteratively following the scaled gradient of the potential
function

qt = qt−1 − γ∇qU(q), (2)

with a successful motion plan constructed when the opti-
mization procedure reaches the minimum of the potential
function U(q). A major limitation of above approach in
Equation 2 is local minima – if the optimization procedure
falls in such a minima, the motion plan will no longer suc-
cessfully construct paths from qst to qe (Yun & Tan, 1997;
Teli & Wani, 2021; LaValle, 2006).

3.2 Potential Based Diffusion Motion Planning

We next discuss how to learn potentials for potential motion
planning that enables us to effectively optimize samples.
Given a motion plan q1:T from start state qst to end state
qe and a configuration space characterization C (i.e. the
set of obstacles in the environment), we propose to learn a
trajectory-level potential function Uθ so that

q∗1:T = argmin
q1:T

Uθ(q1:T , qst, qe, C), (3)

where q∗1:T is a successful motion plan from qst to qe.
To learn the potential function in Equation 3, we pro-

pose to learn an EBM (LeCun et al., 2006; Du & Mor-
datch, 2019) across a dataset of solved motion plan-
ning D = {qist, q

i
e, q

i
1:T , C

i}, where e−Eθ(q1:T |qst,qe,C) ∝
p(q1:T |qst, qe, C). Since the dataset D is of solved motion
planning problems, the learned energy function Eθ will have
minimal energy at successful motion plans q∗1:T and thus
satisfy our potential function Uθ in Equation 3.

To learn the EBM landscape that enables us to effectively
optimize and generate motion plans q∗1:T , we propose to
shape the energy landscape using denoising diffusion train-
ing objective (Sohl-Dickstein et al., 2015; Ho et al., 2020).
In this objective, we explicitly train the energy landscape
so gradient with respect to the energy function can denoise
and recover a motion plan q1:T across many differing levels
of noise corruption {1, . . . , S} ranging from mostly correct
motion paths to fully corrupted Gaussian noise trajectories.
By shaping the gradient of the energy function to generate
motion plans q1:T from arbitrary initialized trajectories, our
learned energy landscape is able to effectively optimize for
motion paths.

Formally, to train our potential, we use the energy based
diffusion training objective in (Du et al., 2023), where
the gradient of energy function is trained to denoise noise-
corrupted motion plans qi1:T from D

LMSE = ∥ϵ−∇q1:TEθ(
√
1− βsq

i
1:T +

√
βsϵ, s, q

i
st, q

i
e, C

i)∥2 (4)

where ϵ is sampled from Gaussian noise N (0, 1), s ∈
{1, 2, ..., S} is the denoising diffusion step (we set S =
100), and βs is the corresponding Gaussian noise corrup-
tion on a motion planning path qi1:T . We refer to Eθ as the
diffusion potential function.

To optimize and sample from our diffusion potential func-
tion, we initialize a motion path qS1:T at diffusion step S
from Gaussian noise N (0, 1) and optimize for motion path
following the gradient of the energy function Eθ. We itera-
tively refine the motion path qs1:T across each diffusion step
following

qs−1
1:T = qs1:T − γϵ+ ξ, ξ ∼ N

(
0, σ2

sI
)
,

ϵ = ∇q1:TEθ(q1:T , s, qst, qe, C) (5)

3

Potential Based Diffusion Motion Planning

Algorithm 1 Compositional Potential Based Planning

1: Models: compositional set of N diffusion potential
functions Ei

θ(q1:T , t, qst, qe, Ci)
2: Hyperparameters: trajectory horizon T , number of

denoising diffusion steps S
3: Input: start position qst, end position qe, N motion

planning constraints C1:N

4: Initialize qS1:T ∼ N (0, I)
5: for s = S . . . 1 do
6: # Combining Different Energy Potentials Together
7: ϵcomb =

∑N
i=1 ∇q1:TE

i
θ(q

s
1:T , s, qst, qe, Ci)

8: # Transit to Next Diffusion Time Step
9: qs−1

1:T = qs1:T − γϵcomb + ξ, ξ ∼ N
(
0, σ2

sI
)
.

10: end for
11: return q01:T

To parameterize the energy function Eθ(q1:T , s, qst, qe, C),
we use classifier-free guidance scale of 2.0 (Ho & Salimans,
2022) to form a peaker composite energy function condi-
tioned on C. γ and σ2

s are diffusion specific scaling con-
stants1. The final predicted motion path q∗1:T corresponds to
the output q01:T after running S steps of optimization from
the diffusion potential function.

3.3 Composing Diffusion Potential Functions

Given two separate diffusion potential functions E1
θ (·)

and E2
θ (·), encoding separate constraints for motion plan-

ning, we can likewise form a composite potential function
Ecomb(·) = E1(·) + E2(·) by directly summing the cor-
responding potentials. This potential function Ecomb will
have low energy precisely at motion planning paths q1:T
which satisfy both constraints, with sampling corresponding
to optimizing this potential function. To sample from the
new diffusion potential function Ecomb, we can follow

qs−1
1:T = qs1:T − γϵcomb + ξ, ξ ∼ N

(
0, σ2

sI
)
, (6)

ϵcomb = ∇q1:T (E
1
θ (q1:T , s, qst, qe, C1) + E2

θ (q1:T , s, qst, qe, C2))

This composite potential is the ground truth potential com-
bining constraints if the constraints are independent, which
is satisfied if the set of trajectories given constraints are uni-
formly distributed (see Appendix C), and otherwise serves
as approximate proxy to optimize multiple constraints.

Applications of Composing Potential Functions. The
ability to combine multiple separate potential functions for
motion planning offers a variety of different ways to gener-
alize and extend existing motion planning systems. First, in
many motion planning problems, there is often a heteroge-
nous set of different types of constraints or collisions that

1A rescaling term at each diffusion step is omitted above for
clarity

Initial Noise Proposal Plan ReplannedNoisy
denoise add noise denoise

Figure 3: Visualization of the Motion Refining Scheme. A
proposal plan is first generated by denoising an initial Gaussian
noise. If collision is detected, a small noise is added to the proposal
and the new plan is generated by denoising the partially noisy
trajectory.

limit possible configuration space paths. For instance, in
autonomous driving, constraints that can arise may include
moving pedestrians, traffic lanes, road work, or incoming
cars. Oftentimes, we cannot enumerate all potential com-
binations, but we wish motion planning systems to be able
to handle all possible combinations of constraints. Jointly
learning a single motion planning model for all constraints
may be difficult, as at test time, we may see novel combi-
nations that we do not have training data for. By learning
separate diffusion potential fields for each constraint, we
can combine them in an ad-hoc manner at test time to deal
with arbitrary sets of constraints. We provide two concrete
implementations of composing potentials together below
and a detailed procedural in Algorithm 1.

Generalization over More Obstacles. Suppose that the
potential function Eθ is trained on environments with 4
obstacles |C| = 4. However, in test time, we want to gen-
eralize to a more complex environment that has 6 obsta-
cles C ′ = {o1, o2, o3, o4, o5, o6}. This can be achieved by
adding the potentials evaluated on two sets of obstacles,
where C1 = {o1, o2, o3, o4} and C2 = {o3, o4, o5, o6}.
This formulation can be further extended to N sets of obsta-
cles C1:N and the composite diffusion potential function is
given by:

Ecomb
θ (q1:T , s, qst, qe, C1:N) =

N∑
i=1

Eθ(q1:T , s, qst, qe, Ci) (7)

Generalization over Static and Dynamic Obstacles.
Many real-life scenarios involve dynamic real-time inter-
action. For instance, to construct motion plans for an au-
tonomous vehicle, we must both avoid static lane obstacles
as well as moving cars. While static obstacles are often
known a priori, the motion patterns of dynamics obstacles
often change with time, making it advantageous to be able
to combine different dynamic constraints with static ones.
We can directly implement this by adding diffusion poten-
tial function Ei

θs
that only trained on static obstacles Cs

i

and diffusion potential function Ej
θd

that only trained on
dynamic obstacles Cd

j . In a more general form, to condition
on a set of N1 static obstacles Cs

1:N1
with their diffusion

potential functions E1:N1

θs
and a set of N2 dynamic Cd

1:N2

4

Potential Based Diffusion Motion Planning

Algorithm 2 Refining Motion Plans

1: Model: compositional potential denoiser
fθ(q1:T , s, qst, qe, C1:N)

2: Hyperparameters: number of refine attempts R, noise
scale k

3: Input: trajectory q1:T , start position qst, end position
qe, N constraints C1:N

4: Z = Get Collision Sections(q)
5: for r = 1 . . . R do
6: qk1:T =

√
ᾱkq1:T + (1− ᾱk)ξ, ξ ∼ N

(
0, σ2

t I
)

7: q′ = fθ(q
k
1:T , k, qst, qe, C1:N),

8: for all zi ∈ Z do
9: if is section good(q′[zi]) then

10: q[zi] = q′[zi]; Z = Z \ zi
11: end if
12: end for
13: end for
14: return q1:T

obstacles with their diffusion potential functions E1:N2

θd
, the

composite diffusion potential function can be written as:

Ecomb
θ (q1:T , s, qst, qe, [C

s
1:N1

, Cd
1:N2

]) =

N1∑
i=1

Ei
θs(q1:T , s, qst, qe, C

s
i) +

N2∑
j=1

Ej
θd
(q1:T , t, qst, qe, C

d
j)

(8)

3.4 Refining Motion Plans

In practice, the predicted motion plan q1:T might occasion-
ally contains sections that violate the constraints of the
environment (i.e., collide with obstacles). To tackle this
issue, both classical and learned motion planners (Kuffner
& LaValle, 2000; Qureshi et al., 2019) provide mechanisms
to refine trajectories subject to collisions in configuration
space. With diffusion potential fields, we can likewise re-
fine a trajectory, q1:T with collision, by locally perturbing it
into a noisy trajectory qk1:T defined by the k-th step of the
diffusion forward process:

qk1:T =
√
ᾱkq1:T + (1− ᾱk)ξ, ξ ∼ N

(
0, σ2

t I
)

(9)

as in (Ho et al., 2020). A new motion plan q′1:T can be ob-
tained by denoising the noisy trajectory following Equation
5, where q′1:T = fθ(q

k
1:T , k, qst, qe, C1:N) and fθ(·) is an

iterative diffusion potential denoiser that outputs a clean tra-
jectory. To fix the problematic trajectory q1:T , the collision
sections in q1:T will be replaced by the corresponding sec-
tions in q′1:T if these new sections are coherent and collision-
free. This refining procedural can be repeated until a desired
trajectory is found. The warm-start denoising scheme can
enable faster re-planning and maintain the morphology of
the original plan, supporting planning on energy-critical
mobile devices or when the plan has been executed. Algo-

Maze2D KUKA 7D Dual KUKA 14D

Figure 4: Environment Demonstration. Maze2D: a point robot
moving in 2D workspace with the highlighted blocks as obstacles.
KUKA: robotic arm with 7 DoF operating on a tabletop. The grey
cuboids are obstacles. Dual KUKA 14D: Two side by side KUKA
arms operate simultaneously.

rithm 2 displays the complete refining pipeline and Figure 3
provides a corresponding visualization.

3.5 Probabilistic Completeness

In this section, we will show the probabilistic completeness
of our method. Let fθ(q1:T) denote the probability density
function of the output distribution Do of our diffusion po-
tential model. In such learned neural distribution, all data
points q1:T are assigned positive density, that is,

∀q1:T , fθ(q1:T) > 0 (10)

Define Jc as the a set of all valid trajectories subject to
constraint C. There always exists a small interval in the
vicinity of a random trajectory qc1:T ∈ Jc, such that

[qc1:T − τ, qc1:T + τ] ⊆ Jc, τ > 0, (11)

i.e., all trajectories in the interval satisfy the given constraint
C. Let Pτ denote the probability for our model to sample a
trajectory from the interval, and according to equation 10
we have,

Pτ =

∫ qc1:T+τ

qc1:T−τ

f(x)dx > 0 (12)

Let An denote the event that there is at least one trajectory
q1:T ∈ Jc among n sampled trajectories. Clearly, as the
number of samples approaches infinity, event A will happen
almost surely, i.e.,

lim
n→∞

P
(
An

)
= 1 (13)

Hence, our method is probabilistically complete.

4 Experiments
In this section, we first describe our environments and base-
lines in Section 4.1. Next, in Section 4.2, we discuss our
experiments on the base environments and the motion re-
fining algorithm. Following, in Section 4.3, we present the
compositionality results by evaluating our motion planner
on composite environments. Then, we describe the real
world motion planning performance in Section 4.4.

5

Potential Based Diffusion Motion Planning

Figure 5: Quantitative Comparisons in Motion Planning Environments. Three metrics of three environments from 2D to 14D are
reported. From left to right: a) number of collision checks, b) success rate, c) planning time.

4.1 Environments and Baselines

We first classify the environments that we evaluated on to 3
categories by the level of generalization capability:

• Base Environment: same number of constraints as in
training phase, constraints sampled from the same distri-
bution as in training.

• Composite Same Environment: more constraints than
training phase, constraints sampled from the same distri-
bution as in training.

• Composite Different Environment: more constraints
than training phase, constraints sampled from different
distributions.

Our simulated motion planning environments are listed be-
low and shown in Figure 4. See Appendix A.1 for more
details. In all environments, the motion planning task is to
generate a feasible trajectory from the start state to the goal
state. The agent trajectory is represented in C-space, while
obstacles are represented in workspace.

• Maze2D. A point-robot moving in a 2D workspace. The
configuration space is the x-y coordinate of the agent. We
offer two variants: Static Maze2D where obstacles stay in
the same locations and Dynamic Maze2D where obstacles
are moving in randomly generated linear trajectories.

• KUKA. A KUKA arm of 7 DoF operating on a tabletop
in a 3D workspace. The start/goal is given as the 7D joint
state of the KUKA arm.

• Dual KUKA. Two KUKA arms are placed side by side
on a tabletop and operating simultaneously. The start/goal
is given as the joint states of two KUKA arms (14 DoF).

Baselines. For non-learning motion planning methods, our
baselines include classic sampling-based planning baseline
RRT* (Karaman & Frazzoli, 2011), sampling-based method
with potential functions based heuristic P-RRT* (Qureshi &
Ayaz, 2016), advanced sampling-based method BIT* (Gam-
mell et al., 2015), sampling-based method for dynamic en-
vironments SIPP (Phillips & Likhachev, 2011), and tradi-
tional potential-based method RMP (Ratliff et al., 2018).

(b)

Ours M𝜋Net

(a)

Figure 6: Qualitative Motion Plans in KUKA Environment.
Results of two motion planning problem are shown in two rows.
The large green/pink ball indicates the start/goal state. Our method
in the left column generates smooth and near-optimal trajectories,
while in row (a), the trajectory of MπNet chooses a longer route
from behind and gets stuck in some local regions, and in row
(b), MπNet cannot pass through the narrow passage and keeps
hovering near the start state.

For learned motion planners, we compare our method with:
MPNet (Qureshi et al., 2019), MπNet (Fishman et al., 2023),
and AMP-LS (Yamada et al., 2023). MPNet is trained on
trajectories with sparse waypoints and use MLPs to encode
environment configuration and predict the next robot state.
MπNet is trained on dense trajectory waypoints and pre-
dicts the movement vector instead of the next robot state.
AMP-LS encodes the robot state into a latent feature and
approaches the goal state by iteratively using the gradient of
several planning losses to update the latent. A sequence of
latents are then decoded and form a trajectory. In evaluation,
all the start/goal states and environment configurations are
unseen to the models. For each experiment, we evaluate on
100 different environments with 20 randomly sampled starts
and goals in each environment. No re-training is performed
in test time.

6

Potential Based Diffusion Motion Planning

RMP BIT* Ours

Figure 7: Qualitative Performance on Environments with Con-
cave Obstacles. Potential-based planning method RMP is prone
to local minima. BIT* is able to find a feasible solution, but the
trajectories are rough and require much longer planning time, es-
pecially for the harder problem in the second row. Trajectories
generated by our planner are both smooth and short in length.

4.2 Performance on Base Environments

We first evaluate motion planning performance in each base
environment: randomly generated environments that fol-
low the same procedural generation pipeline as the training
environments. Quantitative results are shown in Figure 5
and Appendix B.1. We include the full details of evaluation
setup in Appendix A.2.3.

Comparison to Sampling-based Planners. We set the
planning time limit to 5 seconds for all sampling-based
methods. Both RRT*, P-RRT*, and BIT* can succeed in
the base Maze2D environment. However, their success rates
suffer from a significant degradation when the dimension
of the configuration space increases. The planning time of
the sampling-based planners also rises dramatically as the
dimension of the space increases. By contrast, the success
rates of our method surpass all baselines and are consistent
across different environments, achieving this in less than
11% of BIT*’s planning time and requiring up to two orders
of magnitude fewer collision checks.

Comparison to Learning-based Planners. We also com-
pare to three learning-based motion planning baselines:
MPNet, MπNet, and AMP-LS. Our method outperforms

R = 3 R = 5 R = 10

Env Before After Before After Before After

Maze2D 96.3 99.8 95.3 99.0 95.8 100.0
KUKA 71.3 90.0 69.5 94.3 69.8 94.8

Dual KUKA 45.5 69.8 47.3 77.3 47.0 80.8

Table 1: Quantitative Results of Motion Plan Refining. Success
rates before and after motion refining are shown. R denotes the
number of refining attempts. The proposed refining method can
consistently boost success rates on three base environments.

6 + 3 6 + 4 6 + 5

6 6 + 26 + 1

Figure 8: Qualitative Compositional Generalization over More
Obstacles. Two models that trained on only 6 obstacles are com-
posed and tested on out-of-distribution environments with 7, 8, 9,
10, 11 obstacles, respectively.

Maze2D – Convex Maze2D – Concave

Method Success Time Success Time

RRT* 98.8 0.95 92.1 2.14
P-RRT* 98.5 1.17 85.9 2.69

BIT* 100.0 0.21 100.0 0.45
MPNet 88.4 0.21 84.3 0.38
MπNet 97.9 0.07 96.9 0.10
MPD 77.9 2.99 44.4 3.93
RMP 64.9 0.13 28.0 0.34
Ours 100.0 0.12 100.0 0.15

Table 2: Quantitative Performance on Convex and Concave Ob-
stacles. Motion planning performance on Maze2D environments
with 6 convex obstacles (left) and 7 concave obstacles (right). The
proposed diffusion potential planner outperforms the traditional
potential-based method RMP and diffusion motion planning coun-
terpart MPD by a margin. While both our method and the advanced
sampling-based method BIT* can solve all the problems, ours re-
quires significantly less planning time than BIT*.

all baselines in both success rate and number of collision
check. In Dual KUKA, our method leads the state-of-the-art
learning-based planner MπNet by nearly 35% in success
rate while with less than 40% of its planning time and 7
times less of its collision checks. We also observe that
the performance of other planners drop quickly as the diffi-
culty increases, while our planner performs steadily across
all environments. Though the planning time of MπNet in
Maze2D is slightly shorter than ours, the gap is closing as
the dimension of the configuration space increases, and in
Dual KUKA, our planner requires less planning time than
all baselines, probably due to the expensive cost of collision
checks and higher task complexity. Qualitative comparisons
are shown in Figure 6 and 18.

Environments with Concave Obstacles. We construct
additional Maze2D environments where obstacles are con-

7

Potential Based Diffusion Motion Planning

Figure 9: Compositional Generalization. Quantitative compar-
isons of different planner on composite environments. The shaded
areas represent standard errors. Each graph’s leftmost column
displays results for environments that contain the same number of
obstacles as encountered during training. By composing potentials
at test time, our method (red line) can generalize to environments
with much more obstacles than training time.

cave to demonstrate the capability of our learned potential
motion planner to avoid local minima. As shown in Fig-
ure 7, potential-based method RMP tends to get trapped
in local minima in environments filled with concave obsta-
cles. In addition, we observe that BIT* is able to find a
feasible motion plan, but the morphology of the proposed
trajectories are sharp and irregular. We further present the
quantitative results on base Maze2D environments in Table
2, where we include an additional diffusion-based motion
planning approach (Carvalho et al., 2023). Notably, our dif-
fusion potential planner is the only learning-based approach
that successfully solves every motion planning problems in
our evaluation set. Although the advanced sampling-based
method BIT* can also find all the solutions, its average plan-
ning time is significantly longer, taking three times longer
than our method in Maze2D – Concave. More results are
provided in Appendix B.4.

Motion Refining. We present quantitative and qualitative
results of refining motion plans in Table 1 and Figure 3. The
gain of refining motion plans increases as the dimension
of the environment increases. As shown in Table 1, the
success rate generally increases as we increase the number
of refining attempts R, but the gain gradually saturates in 10
attempts. In this case, the proposed trajectory probably suf-
fers from a catastrophic collision, and to obtain a successful

Composed

(a) (d)(b) (c)

Baseline

Figure 10: Qualitative Real World Motion Plans, Hotel Scene.
The composed model provides long-horizon motion plan that avoid
10 pedestrians, while only trained on 5 pedestrians. In column (a)
and (b), the composed plan is aware of P1 (cyan) and P6 (pink)
and overtakes them from above, while the baseline model runs into
them. In column (c), the composed motion plan chooses to move
faster so as to pass through the intersection with P7 (brown) before
P7 arrives, but the baseline motion plan results in a collision due
to its slower speed. In column (d), the composed plan choose to
go upward to avoid the oncoming P8 (black).

Base Dynamic Static 1 + Dynamic Static 2 + Dynamic

M Suc Time Col Suc Time Col Suc Time Col

SIPP 69.9 32.2 1M+ 70.4 185.5 1.7M+ 74.0 98.7 1.3M+
Ours 99.5 0.13 168.8 96.6 4.31 828.6 97.5 4.23 646.4

Table 3: Quantitative Results on Base Dynamic and Static +
Dynamic on Maze2D. Static 1 and Static 2 refer to two different
static Maze2D environments. Our planner can generalize to envi-
ronments with both static and dynamic obstacles while only sepa-
rately trained on static environments or dynamic environments.

motion plan, the diffusion potential model might need to
resample a trajectory from pure noise.

4.3 Performance on Composite Environments

Composing Obstacles. We first evaluate the composition-
ality by adding obstacles to the environments. Qualitative
results of composite Maze2D environments are given in
Figure 8, where we train our model on 6 obstacles and eval-
uate on environments with up to 11 obstacles. Each orange
block represents an extra obstacle added to the test time en-
vironments. As we can see, the composed model effectively
proposes different trajectories according to the presented
obstacles by sampling from the composite potential. We
report the quantitative performance on three environments
with different configuration space dimensions in Figure 9.
More results are shown in Appendix B.2. In addition, we
further include a baseline which directly learns demonstra-
tions of different numbers and types of obstacles in a single
diffusion potential function in Appendix B.6.

Composing Multiple Constraints. We then investigate the
compositionality to combine two different diffusion poten-
tial functions together, i.e., models trained on completely

8

Potential Based Diffusion Motion Planning

different environments. Specifically, we separately train
a model on 6 small obstacles (Static 1) and a model on 3
large obstacles (Static 2) and evaluate the composed model
on environments where both small and large obstacles are
presented. Quantitative and qualitative results are shown in
Table 13 and Figure 12. Moreover, we compose the models
trained on static environments with another model trained
on dynamic environments, by which the composed model
can generalize to environments where both static and dy-
namic obstacles are presented, namely Static 1 + Dynamic
and Static 2 + Dynamic. The corresponding quantitative re-
sults are shown in Table 3. The planning time limit for SIPP
is set to 60s/300s for base/composite dynamic environments.
Please refer to Figure 14 and Figure 15 in Appendix B.3 for
more qualitative results.

4.4 Performance on Real World Datasets

Finally, we evaluate the effectiveness of our method on the
real world ETH/UCY (Pellegrini et al., 2010; Lerner et al.,
2007) dataset. The dataset we used consists of 6 scenes
(ETH, Hotel, Zara01, Zara02, Students01, Students03),
where each scene contains human trajectories in world-
coordinates collected by manual annotation from a bird-
eye-view camera. Our focus is to investigate if our model
can propose successful trajectories given the start and goal
locations of an agent in a random, cluttered street-level
real-world interaction. Specifically, the planner is trained
to predict the trajectory of the agent (highlighted in red),
conditioned on the trajectories of 5 other pedestrians. The
training data contains 5 scenes and the held-out scene is
used for evaluation. In Figure 17, we present the qualita-
tive results where 5 other pedestrians are presented. We
also evaluate on 10 presented pedestrians by composing
two potential functions each constrained by 5 pedestrians,
as illustrated in Figure 10. Details settings and qualitative
results are presented in Appendix B.5.

5 Discussion
Limitations. Our existing formulation of potential based
diffusion motion planner has several limitations. First, al-
though our motion trajectory is accurate, it is often sub-
optimal, e.g., there exists a shorter path from start to goal.
This may be addressed by adding an additional potential to
reach the goal as soon as possible. Second, our approach
to composing potentials scales linearly with the number of
composed models, requiring significantly more computa-
tion power with additional models. This can be remedied
by having different potential operate on shared features in a
network.

Conclusion. In this work, we have introduced a potential
based diffusion motion planner. We first formulate our dif-
fusion potential motion planner and describe its connections

and advantages over traditional potential based planner. We
illustrate the motion planning performance of our approach
in terms of success rate, planning time, and the number
of collision checks over motion planning problems with
dimension of 2D, 7D, 14D. We further illustrate the compo-
sitionality of the approach, enabling generalization to both
new objects and new combinations of motion constraints.
Finally, we illustrate the potential of our work on real world
scenes with multi-agent interaction.

Acknowledgements
We acknowledge support from NSF grant 2214177; from
AFOSR grant FA9550-22-1-0249; from ONR MURI grant
N00014-22-1-2740; from ARO grant W911NF-23-1-0034;
and from the Samsung Global Research Outreach Program.
Yilun Du is supported by a NSF Graduate Fellowship. We
thank the anonymous reviewers for their careful review. Our
research was conducted using computational resources at
the Center for Computation and Visualization at Brown
University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, which we believe should be
similar to a generic machine learning paper. For example, if
the motion pattern in the dataset is biased, the motion plans
generated by our model might have similar biases as the
training dataset. No other issues we feel must be specifically
highlighted here.

References
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J. B., Jaakkola,

T. S., and Agrawal, P. Is conditional generative modeling
all you need for decision making? In The Eleventh
International Conference on Learning Representations,
2023.

Bency, M. J., Qureshi, A. H., and Yip, M. C. Neural path
planning: Fixed time, near-optimal path generation via
oracle imitation. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
3965–3972. IEEE, 2019.

Carvalho, J., Baierl, M., Urain, J., and Peters, J. Conditioned
score-based models for learning collision-free trajectory
generation. In NeurIPS 2022 Workshop on Score-Based
Methods, 2022.

Carvalho, J., Le, A. T., Baierl, M., Koert, D., and Peters,
J. Motion planning diffusion: Learning and planning

9

Potential Based Diffusion Motion Planning

of robot motions with diffusion models. arXiv preprint
arXiv:2308.01557, 2023.

Chang, J., Ryu, H., Kim, J., Yoo, S., Seo, J., Prakash, N.,
Choi, J., and Horowitz, R. Denoising heat-inspired dif-
fusion with insulators for collision free motion planning.
arXiv preprint arXiv:2310.12609, 2023.

Chaplot, D. S., Pathak, D., and Malik, J. Differentiable
spatial planning using transformers. In International Con-
ference on Machine Learning, pp. 1484–1495. PMLR,
2021.

Chen, H., Lu, C., Ying, C., Su, H., and Zhu, J. Offline rein-
forcement learning via high-fidelity generative behavior
modeling. arXiv preprint arXiv:2209.14548, 2022.

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burch-
fiel, B., and Song, S. Diffusion policy: Visuomotor
policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa,
S. S., and Scherer, S. Regionally accelerated batch in-
formed trees (rabit*): A framework to integrate local
information into optimal path planning. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 4207–4214. IEEE, 2016.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2021.

Dalal, M., Mandlekar, A., Garrett, C., Handa, A., Salakhut-
dinov, R., and Fox, D. Imitating task and motion
planning with visuomotor transformers. arXiv preprint
arXiv:2305.16309, 2023.

Du, Y. and Mordatch, I. Implicit generation and modeling
with energy based models. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Du, Y., Durkan, C., Strudel, R., Tenenbaum, J. B., Diele-
man, S., Fergus, R., Sohl-Dickstein, J., Doucet, A., and
Grathwohl, W. S. Reduce, reuse, recycle: Compositional
generation with energy-based diffusion models and mcmc.
In International Conference on Machine Learning, pp.
8489–8510. PMLR, 2023.

Elbanhawi, M. and Simic, M. Sampling-based robot motion
planning: A review. Ieee access, 2:56–77, 2014.

Fang, X., Garrett, C. R., Eppner, C., Lozano-Pérez, T., Kael-
bling, L. P., and Fox, D. Dimsam: Diffusion models
as samplers for task and motion planning under partial
observability. arXiv preprint arXiv:2306.13196, 2023.

Fiorini, P. and Shiller, Z. Motion planning in dynamic
environments using velocity obstacles. The international
journal of robotics research, 17(7):760–772, 1998.

Fishman, A., Murali, A., Eppner, C., Peele, B., Boots, B.,
and Fox, D. Motion policy networks. In Conference on
Robot Learning, pp. 967–977. PMLR, 2023.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Informed
rrt: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic. In
2014 IEEE/RSJ international conference on intelligent
robots and systems, pp. 2997–3004. IEEE, 2014.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Batch
informed trees (bit*): Sampling-based optimal planning
via the heuristically guided search of implicit random geo-
metric graphs. In 2015 IEEE international conference on
robotics and automation (ICRA), pp. 3067–3074. IEEE,
2015.

Ha, H., Florence, P., and Song, S. Scaling up and distilling
down: Language-guided robot skill acquisition. arXiv
preprint arXiv:2307.14535, 2023.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Advances in Neural Information
Processing Systems, volume 33, pp. 6840–6851, 2020.

Huang, S., Wang, Z., Li, P., Jia, B., Liu, T., Zhu, Y., Liang,
W., and Zhu, S.-C. Diffusion-based generation, optimiza-
tion, and planning in 3d scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16750–16761, June 2023.

Ichter, B. and Pavone, M. Robot motion planning in learned
latent spaces. IEEE Robotics and Automation Letters, 4
(3):2407–2414, 2019.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
International Conference on Machine Learning, 2022.

Janson, L., Schmerling, E., Clark, A., and Pavone, M. Fast
marching tree: A fast marching sampling-based method
for optimal motion planning in many dimensions. The
International journal of robotics research, 34(7):883–921,
2015.

Johnson, J. J., Kalra, U. S., Bhatia, A., Li, L., Qureshi, A. H.,
and Yip, M. C. Motion planning transformers: A motion
planning framework for mobile robots. arXiv preprint
arXiv:2106.02791, 2021.

10

http://pybullet.org

Potential Based Diffusion Motion Planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and
Schaal, S. Stomp: Stochastic trajectory optimization for
motion planning. In 2011 IEEE international conference
on robotics and automation, pp. 4569–4574. IEEE, 2011.

Kang, B., Ma, X., Du, C., Pang, T., and Yan, S. Efficient dif-
fusion policies for offline reinforcement learning. arXiv
preprint arXiv:2305.20081, 2023.

Kapelyukh, I., Vosylius, V., and Johns, E. Dall-e-bot: In-
troducing web-scale diffusion models to robotics. IEEE
Robotics and Automation Letters, 2023.

Karaman, S. and Frazzoli, E. Sampling-based algorithms
for optimal motion planning. The international journal
of robotics research, 30(7):846–894, 2011.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars,
M. H. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on
Robotics and Automation, 12(4):566–580, 1996.

Khatib, O. Real-time obstacle avoidance for manipulators
and mobile robots. The international journal of robotics
research, 5(1):90–98, 1986.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Koren, Y., Borenstein, J., et al. Potential field methods and
their inherent limitations for mobile robot navigation. In
Icra, volume 2, pp. 1398–1404, 1991.

Kuffner, J. J. and LaValle, S. M. Rrt-connect: An efficient
approach to single-query path planning. In Proceedings
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), volume 2, pp. 995–1001.
IEEE, 2000.

Laumond, J.-P. et al. Robot motion planning and control,
volume 229. Springer, 1998.

LaValle, S. M. Planning algorithms. Cambridge university
press, 2006.

Lawson, D. and Qureshi, A. H. Control transformer: Robot
navigation in unknown environments through prm-guided
return-conditioned sequence modeling. arXiv preprint
arXiv:2211.06407, 2022.

Le, A. T., Chalvatzaki, G., Biess, A., and Peters, J. Accel-
erating motion planning via optimal transport. In IROS
2023 Workshop on Differentiable Probabilistic Robotics:
Emerging Perspectives on Robot Learning, 2023.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. A tutorial on energy-based learning. Predicting struc-
tured data, 1(0), 2006.

Lerner, A., Chrysanthou, Y., and Lischinski, D. Crowds by
example. In Computer graphics forum, volume 26, pp.
655–664. Wiley Online Library, 2007.

Li, W., Wang, X., Jin, B., and Zha, H. Hierarchical diffusion
for offline decision making. 2023.

Liang, Z., Mu, Y., Ding, M., Ni, F., Tomizuka, M., and
Luo, P. Adaptdiffuser: Diffusion models as adaptive
self-evolving planners. In International Conference on
Machine Learning, 2023.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable diffu-
sion models. arXiv preprint arXiv:2206.01714, 2022.

Mukadam, M., Dong, J., Yan, X., Dellaert, F., and Boots,
B. Continuous-time gaussian process motion planning
via probabilistic inference. The International Journal of
Robotics Research, 37(11):1319–1340, 2018.

Pellegrini, S., Ess, A., and Van Gool, L. Improving data
association by joint modeling of pedestrian trajectories
and groupings. In Computer Vision–ECCV 2010: 11th
European Conference on Computer Vision, Heraklion,
Crete, Greece, September 5-11, 2010, Proceedings, Part
I 11, pp. 452–465. Springer, 2010.

Phillips, M. and Likhachev, M. Sipp: Safe interval path
planning for dynamic environments. In 2011 IEEE in-
ternational conference on robotics and automation, pp.
5628–5635. IEEE, 2011.

Qureshi, A. H. and Ayaz, Y. Potential functions based sam-
pling heuristic for optimal path planning. Autonomous
Robots, 40:1079–1093, 2016.

Qureshi, A. H., Simeonov, A., Bency, M. J., and Yip, M. C.
Motion planning networks. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 2118–2124.
IEEE, 2019.

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S.
Chomp: Gradient optimization techniques for efficient
motion planning. In 2009 IEEE international conference
on robotics and automation, pp. 489–494. IEEE, 2009.

Ratliff, N. D., Issac, J., Kappler, D., Birchfield, S., and
Fox, D. Riemannian motion policies. arXiv preprint
arXiv:1801.02854, 2018.

Rezende, D. J. and Viola, F. Taming vaes. arXiv preprint
arXiv:1810.00597, 2018.

Saha, K., Mandadi, V., Reddy, J., Srikanth, A., Agarwal, A.,
Sen, B., Singh, A., and Krishna, M. Edmp: Ensemble-
of-costs-guided diffusion for motion planning. arXiv
preprint arXiv:2309.11414, 2023.

11

Potential Based Diffusion Motion Planning

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Strub, M. P. and Gammell, J. D. Advanced bit (abit):
Sampling-based planning with advanced graph-search
techniques. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 130–136. IEEE,
2020.

Teli, T. A. and Wani, M. A. A fuzzy based local minima
avoidance path planning in autonomous robots. Inter-
national Journal of Information Technology, 13:33–40,
2021.

Toma, A.-I., Jaafar, H. A., Hsueh, H.-Y., James, S., Lenton,
D., Clark, R., and Saeedi, S. Waypoint planning networks.
arXiv preprint arXiv:2105.00312, 2021.

Urain, J., Funk, N., Peters, J., and Chalvatzaki, G. Se
(3)-diffusionfields: Learning smooth cost functions for
joint grasp and motion optimization through diffusion.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5923–5930. IEEE, 2023.

Van den Berg, J., Lin, M., and Manocha, D. Reciprocal
velocity obstacles for real-time multi-agent navigation.
In 2008 IEEE international conference on robotics and
automation, pp. 1928–1935. Ieee, 2008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, L., Ames, A. D., and Egerstedt, M. Safety barrier
certificates for collisions-free multirobot systems. IEEE
Transactions on Robotics, 33(3):661–674, 2017.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
In The Eleventh International Conference on Learning
Representations, 2023.

Xie, M., Van Wyk, K., Li, A., Rana, M. A., Wan, Q., Fox,
D., Boots, B., and Ratliff, N. Geometric fabrics for
the acceleration-based design of robotic motion. arXiv
preprint arXiv:2010.14750, 2020.

Yamada, J., Hung, C.-M., Collins, J., Havoutis, I., and
Posner, I. Leveraging scene embeddings for gradient-
based motion planning in latent space. arXiv preprint
arXiv:2303.03364, 2023.

Yang, M., Du, Y., Dai, B., Schuurmans, D., Tenenbaum,
J. B., and Abbeel, P. Probabilistic adaptation of text-to-
video models. arXiv preprint arXiv:2306.01872, 2023a.

Yang, Z., Mao, J., Du, Y., Wu, J., Tenenbaum, J. B., Lozano-
Pérez, T., and Kaelbling, L. P. Compositional diffusion-
based continuous constraint solvers. arXiv preprint
arXiv:2309.00966, 2023b.

Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M., and
Kanezaki, A. Path planning using neural a* search. In
International conference on machine learning, pp. 12029–
12039. PMLR, 2021.

Yu, C. and Gao, S. Reducing collision checking for
sampling-based motion planning using graph neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:4274–4289, 2021.

Yun, X. and Tan, K.-C. A wall-following method for es-
caping local minima in potential field based motion plan-
ning. In 1997 8th International Conference on Advanced
Robotics. Proceedings. ICAR’97, pp. 421–426. IEEE,
1997.

12

Potential Based Diffusion Motion Planning

A Appendix
In this appendix, we first present our dataset details in Section A.1. Next, we provide implementation details in Section A.2,
such as model architecture, training and evaluation setups, hyperparameters. Further, We show additional quantitative and
qualitative results in Section B, including base environments, composite environments, and real-world datasets. Lastly, in
Section C, we give a proof on the optimality of composing potentials of sets of constraints.

A.1 Dataset Details

In this section, we present details of the three base environments. Each dataset consists of feasible trajectories of randomly
sampled start and goal states. All datasets are collected by BIT*(Gammell et al., 2015). All environments except Maze2D
are simulated via PyBullet (Coumans & Bai, 2016–2021).

Maze2D. The workspace is a 5 × 5 square and the agent is a point-robot whose state is its x-y coordinate in the workspace.
In the base Maze2D environment (Static 1), the obstacles are 6 square blocks of size 1 × 1. We construct another Maze2D
environment (Static 2) where obstacles are 3 square blocks of size 1.4 × 1.4. In addition, we construct a Maze2D environment
with 7 concave obstacles. For simplicity, the volume of the robot agent is ignored – collision happens when the location is
inside the region of an obstacle. The training data contains 3,000 different environment configurations and 25,000 states for
each environments (approximately 500 trajectories).

KUKA. One KUKA LBR iiwa robotic arm is placed at the center (0, 0, 0) in world coordinate and obstacles are given
as cubic of length 0.40 meter and are randomly placed in the surrounding of the robot. The training data contains 2,000
different environment configurations and 25,000 states for each environments.

Dual KUKA. Two KUKA LBR iiwa robotic arms are placed side by side on a tabletop. One is at world coordinate
(−0.5, 0, 0) and the other is at (0.5, 0, 0). Obstacles are given as cubic of length 0.44 meters and are randomly placed in the
surrounding of the robots. The training data contains 2,500 different environment configurations and 25,000 states for each
environment.

ETH/UCY. The dataset we used contains 6 scenes, where in each scene there are hundreds of street-level pedestrians
trajectories. In each scene, a video is recorded using a fixed bird-eye-view camera facing the street, and the coordinates
of each pedestrian are manually annotated according to the recorded video. We use real-world pedestrian trajectories of 5
scenes to train our model and evaluate on the one held-out scene.

A.2 Implementation details

Software:. The computation platform is installed with Red Hat 7.9, Python 3.8, PyTorch 1.10.1, and Cuda 11.1

Hardware:. For each of our experiments, we used 1 RTX 3090 GPU.

A.2.1 ENERGY-BASED DIFFUSION MODEL

Model Architecture. The diffusion potential model fθ consists of a CNN trajectory denoiser based on U-Net similar to
(Ajay et al., 2023) and a constraint (i.e., environment configuration) encoder. The U-Net contains repeated residual blocks
where each block consists of two temporal convolutions followed by GroupNorm and SiLU nonlinearity (Hendrycks &
Gimpel, 2016). The constraint encoder uses the Transformer encoder structure (Vaswani et al., 2017), whose input is a set
of obstacle locations for static environments or obstacle trajectories for dynamic environments. We remove the positional
embedding, since the obstacles information should be permutation invariance with each other. We concatenate the learned
class token from transformer with the time embedding and feed the concatenated tensor to temporal convolution blocks in
U-Net for denoising. More details of the models are shown in Table A.2.1 and Table A.2.1. Note that we do not further
explore the selection of the concrete model architecture, but we believe that some more advanced architectures could further
improve our performance.

13

Potential Based Diffusion Motion Planning

Hyperparameters Value

Base Feature Channels 64
Feature Dimension Scale (64, 256, 512)
Groups in GroupNorm 8

Nonlinearity SiLU

Table 4: Hyperparameter of U-Net.

Hyperparameters Value

Base Embedding Channel 64
Transformer Layers 3

Attention Heads 1
Nonlinearity SiLU

Table 5: Hyperparameter of Constraint Encoder.

Energy Parameterization. To encode the energy E(·) of as in equation 4, we use L2 energy-parameterization as given in
equation 14. For more details on Energy-based Diffusion Model, please refer to (Du et al., 2023).

EL2
θ (x, t) =

1

2
||fθ(x, t)||2 (14)

A.2.2 TRAINING DETAILS

Training Pipeline. In training, the dataloader randomly samples trajectories of length equal to the training horizon from the
whole dataset. We provide detailed hyperparameters for training our model in Table 6. We do not apply any hyperparameter
search nor learning rate scheduler. The training time of our model is approximately two days, but we observe that the
performance is close to saturation within one day.

Hyperparameters Value

Horizon 48
Diffusion Time Step 100

Probability of Condition Dropout 0.2
Iterations 2M

Batch Size 512
Optimizer Adam

Learning Rate 2e-4

Table 6: Hyperparameters of Diffusion Potential Motion Planner (Training)

A.2.3 EVALUATION DETAILS

Our Evaluation Pipeline. The input of the planner is the start state, goal state, and the environment constraints (e.g., obstacle
locations represented in workspace), and the output is the proposed trajectory. In test time, the number of denoising timestep
is set to 10 by using DDIM (Song et al., 2020). The intermediate noise scale eta in DDIM is set to 0 for base environments
and 1 for composite environments. The evaluation pipeline of our model consists of three phases: Propose Motion Plan
Candidates, Candidate Selection, and Motion Refining. The planner first generates multiple candidate trajectories using
Algorithm 1. It then accesses the environment and performs collision check to select a successful trajectory from the
candidates. Finally, if no desired candidate is found, it will execute the motion refining as in Algorithm 2. Hyperparameters
used in evaluation is detailed in Table 7 and Table 8. We observe that our planner can directly solve all the problems in
Maze2D, hence we do not use replanning during the evaluation of Maze2D environments.

Baselines Evaluation Pipeline. We try our best to re-implement every baseline and follow their original settings. For
MPNet (Qureshi et al., 2019), we follow their implementation and use bi-directional path generation in test time. As for
AMP-LS, we implement a Variational Auto-Encoder (VAE) (Kingma & Welling, 2013) to encode the robot pose state and
leverage GECO loss (Rezende & Viola, 2018) in path optimization. MπNet does not provide a replan scheme in their design.
For fair comparison, we boost MπNet with replan by backtracing to previous timestep and adding a small random noise for
restart when any collisions are detected.

B Additional Results
In this section, we provide more quantitative and qualitative motion planning results. In Section B.1, we present additional
planning results on the base environments. In Section B.2, we show planning performance on composite same environments.

14

Potential Based Diffusion Motion Planning

Hyperparameters Value

Horizon 48
DDIM Time Step 8

DDIM eta 0.0
Guidance Scale 2.0

of Trajectory Candidate 20
of Refine Attempts R 0
Refine Noise Scale k –

Table 7: Hyperparameters of Diffusion Potential Motion Plan-
ner (Evaluation on Maze2D)

Hyperparameters Value

Horizon 52
DDIM Time Step 10

DDIM eta 0.0
Guidance Scale 2.0

of Trajectory Candidate 20
of Refine Attempts R 5
Refine Noise Scale k 3

Table 8: Hyperparameters of Diffusion Potential Motion Plan-
ner (Evaluation on KUKA and Dual KUKA)

In Section B.3, we provide planning performance on composite different environments, including composing two different
static models and composing a static model and a dynamic model. In Section B.4, we show motion planning performance
on a more challenging Maze2D environment with concave obstacles. In Section B.5, we present more quantitative and
qualitative evaluation results on the real-world dataset.

B.1 Performance on Base Environment

We provide detailed numerical motion planning results on three base environments in Table 9. The corresponding bar plot
visualization is given in Figure 5. Besides, we provide an additional GNN-based motion planning baseline (Yu & Gao, 2021)
in the table below. We report the mean and standard error on three main motion planning metrics: success rate, planning
time and number of collision checks. Our method consistently outperforms all other baselines on success rate. Especially, in
the hardest Dual KUKA environment, our planner outperforms other learning-based baseline by 40-50% on success rate,
and even outperforms the advance sampling-based method BIT* by 15% while with one order of magnitude less planning
time and collision checks.

Maze2D KUKA Dual KUKA

Method Success Time Check Success Time Check Success Time Check

RRT* 98.8±0.3 0.95±0.02 10453.4±156.8 59.4±1.9 3.15±0.06 19508.6±278.6 39.5±1.6 4.16±0.04 18560.5±112.6
P-RRT* 98.5±0.3 1.17±0.02 14158.9±225.8 58.0±1.9 3.44±0.06 21471.4±269.1 35.0±1.6 4.54±0.02 18117.7±78.8
BIT* 100.0±0.0 0.21±0.00 2067.4±24.4 96.5±0.7 0.86±0.04 6047.6±364.7 82.1±1.6 2.37±0.08 8925.4±365.0
AMP-LS 86.3±0.9 1.41±0.11 1025.4±30.2 27.2±4.3 3.89±0.35 4176.4±131.0 40.9±3.2 7.38±0.72 12091.3±230.0
MPNet 85.6±0.9 0.41±0.01 6315.7±203.0 76.0±3.9 0.10±0.02 885.4±135.5 42.0±4.1 0.35±0.04 1750.2±195.6
MπNet 97.9±0.3 0.07±0.00 178.7±7.8 88.7±0.8 0.22±0.01 232.5±11.6 63.9±1.4 0.72±0.02 875.2±26.7
GNN 100.0±0.0 0.11±0.00 1043.3±5.5 98.9±0.4 0.38±0.01 2207.4±153.6 94.6±0.6 1.22±0.03 6269.1±344.7

Ours 100.0±0.0 0.12±0.00 97.0±0.3 99.7±0.0 0.13±0.00 75.5±3.1 97.7±0.5 0.27±0.01 122.4±6.1

Table 9: Quantitative Motion Planning Performance. Evaluated on 100 unseen environments with 20 motion planning problems in each
environment. We report the mean over all environments and the standard error across different environments. The table is the numerical
results corresponding to the bar plot visualization in Figure 5.

In addition, we present 4 qualitative comparisons with the state-of-the-art learning-based motion planner MπNet on the
KUKA environments in Figure 18 at the end of this section. In Figure 19, we demonstrate the versatile morphology of our
motion trajectories on the same motion planning problem.

B.2 Performance on Composite Same Environment

We construct composite same environments with more obstacles of the same type than training phase environments. Since
more obstacles are presented, these evaluation environments are out of training distribution and hence more challenging.
The locations of each obstacle in the evaluation environments are random and unseen to the model. We further provide
a baseline Diffusion in which we do not compose potentials. The quantitative results are shown in Table 10, 11, 12, and
qualitative results are shown in Figure 11. Our composed model demonstrates superior performance over all benchmarks,
which is consistent with the expectation that composition enables more effective generalization to more obstacles.

15

Potential Based Diffusion Motion Planning

As presented in Section 3.3, when generalizing to more obstacles, we might split the obstacles into several groups before
composition. In our experiments, the splitting of obstacles is random, and we do not observe correlations between
performance and the ways of splitting.

6 6 + 56 + 1 6 + 2 6 + 3 6 + 4

Figure 11: Compositional Generalization over Increasing Obstacles. The green/pink star indicates the start/goal state. Our planner is
trained with a dataset with only 6 obstacles and can generalize to scenarios with more obstacles by directly composing potentials in test
time (without any re-training). The generated trajectories demonstrate various morphology and reach the goals with near optimal paths.

6 + 1 6 + 2 6 + 3

Method Success Check Success Check Success Check

Maze2D

RRT* 98.5±0.3 11467.3±176.8 97.7±0.4 12675.6±238.9 96.7±0.5 14247.8±302.1
P-RRT* 97.5±0.3 15308.9±257.3 96.8±0.5 17176.1±324.3 92.8±0.7 19280.9±429.9
BIT* 100.0±0.0 2340.0±35.4 100.0±0.0 2635.7±40.6 100.0±0.0 2942.3±53.7
AMP-LS 74.1±6.4 2845.2±247.0 66.7±6.2 3357.6±298.0 56.5±7.0 3973.5±290.0
MπNet 92.6±0.8 349.7±23.3 88.0±1.1 481.2±30.1 81.2±1.5 685.3±45.5
Diffusion 99.9±0.1 126.1±5.6 99.2±0.2 229.7±11.8 95.4±0.9 454.8±34.2
Composed 100.0±0.0 102.8±2.6 99.9±0.1 147.9±6.4 99.5±0.3 218.8±15.1

6 + 4 6 + 5 6 + 6

Method Success Check Success Check Success Check

Maze2D

RRT* 93.3±0.6 15729.8±307.4 88.7±1.1 18508.4±449.0 84.7±1.3 18598.5±416.9
P-RRT* 89.0±0.9 21280.1±398.9 78.2±1.7 24471.1±526.0 76.7±1.5 24491.8±501.8
BIT* 100.0±0.0 3220.2±59.7 100.0±0.1 3563.4±79.2 100.0±0.1 3580.7±61.1
AMP-LS 45.1±7.2 4560.4±310.0 37.8±7.7 4928.6±361.0 33.5±7.0 5107.2±341.0
MπNet 75.6±1.5 860.7±47.3 65.0±1.8 1154.3±50.8 66.2±1.6 1120.9±48.0
Diffusion 85.2±1.4 769.7±41.4 71.9±1.8 997.0±38.1 64.0±1.8 1080.1±31.9
Composed 98.8±0.3 308.2±22.1 97.0±0.5 393.9±23.0 97.0±0.5 392.7±25.7

Table 10: Compositional Generalization over Increased Obstacles in Maze2D. In the top row, the left digit represents the number of
obstacles that the model is trained on; the right digit denotes the number of extra obstacles added to the evaluation environments. Unlike
other learning-based planners, whose performance significantly declines as the number of obstacles increases, our method sustains a
near-optimal success rate even when the quantity of obstacles doubles.

16

Potential Based Diffusion Motion Planning

4 + 1 4 + 2 4 + 3

Method Success Check Success Check Success Check

KUKA

RRT* 58.1±2.1 18920.7±281.3 56.5±2.0 17964.2±230.7 59.5±2.3 17339.7±261.3
P-RRT* 55.7±2.1 20356.2±254.2 55.0±2.1 19420.8±216.0 56.8±2.3 18287.8±203.3
BIT* 93.4±1.1 7045.6±483.9 91.5±1.2 8055.9±505.9 92.0±1.2 7176.8±477.9
AMP-LS 28.8±2.0 6767.0±154.0 35.0±1.6 7461.5±401.0 37.0±1.7 7277.4±150.0
MπNet 85.7±1.2 262.6±16.0 82.2±1.4 314.7±19.3 84.0±1.3 301.7±18.6
Diffusion 92.7±1.5 273.3±45.1 83.9±6.1 425.5±99.6 82.8±5.1 430.8±79.8
Composed 97.0±0.8 171.5±35.3 92.4±1.5 283.4±43.2 93.4±1.2 259.9±39.4

Table 11: Compositional Generalization over Increased Obstacles in KUKA. In the top row, the left digit represents the number of
obstacles that the model is trained on; the right digit denotes the number of additional obstacles. By composing potentials, our planner
surpasses all the baselines by a margin.

5 + 1 5 + 2 5 + 3 5 + 4

Method Success Check Success Check Success Check Success Check

Dual
KUKA

RRT* 36.2±1.9 17843.8±110.8 33.2±1.7 17311.8±93.9 33.9±1.8 16847.9±81.1 30.4±1.7 16355.9±72.6
P-RRT* 30.4±1.8 16921.2±75.2 24.6±1.4 16029.4±74.3 23.1±1.5 15387.9±69.0 17.3±1.3 14667.8±81.9
BIT* 76.2±1.9 9470.5±376.1 69.0±2.2 9631.7±284.6 57.9±2.7 9034.9±256.0 44.0±3.0 8290.1±176.1
AMP-LS 0.1±0.0 17512.0±180.0 0.3±0.1 17107.4±219.0 0.1±0.1 16725.1±233.0 0.3±0.1 16419.1±210.0
MπNet 60.5±1.4 919.4±27.5 55.1±1.5 1034.9±27.6 51.0±1.7 1106.4±30.3 48.8±1.5 1134.0±27.2
Diffusion 91.7±1.5 305.6±29.8 80.9±2.2 497.1±35.5 69.0±2.9 624.0±35.8 58.1±3.0 761.0±31.0
Composed 97.3±0.7 250.4±26.2 95.2±1.1 373.9±37.1 90.8±1.3 545.7±43.7 87.8±1.5 648.4±47.2

Table 12: Compositional Generalization over Increased Obstacles in Dual KUKA. In the top row, the left digit represents the number
of obstacles that the model trained on; the right digit denotes the number of additional obstacles. In this most difficult Dual KUKA
environment, our planner outperforms other baselines by a larger margin. From 5 + 1 to 5 + 4, the advanced sampling-based method BIT*
drops by 32%, with a success rate of 44%, while our method only drops by less than 10%, achieving 87.8% in success rate.

B.3 Performance on Composite Different Environment

We present extra experiment results on composing two different models. Each model is separately trained on one single
obstacle type and we evaluate them on more complex environments with multiple obstacle types.

Static 1 + Static 2. In Table 13, we present quantitative generalization results of composing two different static Maze2D
models. Static 1 is a model only trained on obstacles of size 1× 1 and Static 2 is a model only trained on obstacles of size
1.4× 1.4. The composite environment Static 1 + Static 2 contains six 1× 1 obstacles and three 1.4× 1.4. As the setting in
the evaluation of the base environments, we evaluate on 100 different environments with 20 randomly generated start and
goal in each environment. Obstacles in all environments are randomly placed. No extra training is required. We also present
qualitative results over increasing obstacles in the composite different environment (Static 1 + Static 2) in Figure 12.

Static 1 + Static 2

Method Success Check

RRT* 90.3 18495.1
P-RRT* 82.8 24959.9

BIT* 100.0 3486.9

Ours 98.9 304.7

Table 13: Quantitative Results on Maze2D Composite Different Environments. Static 1 is a model only trained on obstacles of size
1× 1 and Static 2 is a model only trained on obstacles of size 1.4× 1.4. The testing environments contain six 1× 1 obstacles and three
1.4× 1.4 obstacles. Though trained on different environments separately, the composed model reaches near optimal success rate while
requiring one order of magnitude less collision checks than BIT*.

17

Potential Based Diffusion Motion Planning

3

3 + 6

3 + 2

3 + 4

3 + 3

3 + 5

3 + 1

Figure 12: Compositional Generalization over Different Obstacles. The green/pink star indicates the start/goal state. Two separately
trained models are composed: a model only trained on large blocks (blue) of size 1.4× 1.4 and a model only trained on smaller blocks
(orange) 1× 1. By composing two models, our planner can generalize to more complex scenarios with various obstacles in test time
(without any re-training). The generated trajectories demonstrate various morphology and reach the goal with smooth and short paths.

Static 1 + Concave. In Figure 13, we provide qualitative results on composite environments of square obstacles and concave
obstacles. In the leftmost column, we show a generated motion trajectory on a base environment with 6 square obstacles
only. Following this, we gradually add concave obstacles to the base environment, from 6 + 1 to 6 + 6. Our planner can plan
smooth and coherent trajectories accordingly by composing the corresponding potentials.

6 6 + 2 6 + 36 + 1

6 + 66 + 4 6 + 5

Figure 13: Compositional Generalization over Square and Concave Obstacles. The green/pink star indicates the start/goal state.
Two separately trained models are composed: a model only trained on square blocks (blue) of size 1.0× 1.0 and a model only trained
on concave blocks (orange). Our planner can adaptively propose motion trajectories according to the environments by composing the
potentials of square obstacles and concave obstacles.

18

Potential Based Diffusion Motion Planning

Static 1 + Dynamic Environment. We evaluate our method on composite different environments which contain both static
and dynamic obstacles. Note that our method is only trained on environments that purely consist of static obstacles or
dynamic obstacles. Static 1 is a model that is only trained on six 1× 1 static obstacles and Dynamic is a model that only
trained on one moving 2× 2 obstacle. The composite environments contain six 1× 1 static obstacles together with one
moving 2× 2 obstacle. The quantitative results are shown in Table 3 and two qualitative results are shown in Figure 14.

T = 1 T = 13 T = 19 T = 48T = 35

T = 1 T = 20 T = 35 T = 48T = 40
Figure 14: Qualitative Compositionality Generalization over Static 1 + Dynamic Obstacles. The current position of the agent is
shown in the pink asterisk. The grey line indicates the moving trajectory of the dynamic obstacle (the large blue block). In the first row,
the planned trajectory goes further left in order to avoid the moving obstacle from the upper right. At T = 19, the trajectory is traveling
right while can still avoid the other orange static obstacles. In the second row, the dynamic obstacle is first moving toward the bottom
right corner and then going back to the upper left. At around T = 35, the trajectory takes several extra moves, waiting for the blue block
passing through the goal position.

Static 2 + Dynamic Environment. Static 2 is a model that is only trained on 1.4× 1.4 static obstacles and Dynamic is a
model that only trained on one large moving 2× 2 obstacle. The composite environments contain three 1.4× 1.4 static
obstacles and one moving 2× 2 obstacle. The quantitative results are shown in Table 3 and two qualitative results are shown
in Figure 15.

19

Potential Based Diffusion Motion Planning

T = 1 T = 10 T = 20 T = 48T = 35

T = 1 T = 10 T = 35 T = 48T = 40

Figure 15: Qualitative Compositionality Generalization over Static 2 + Dynamic Obstacles. The current position of the agent is
shown in the pink asterisk. The grey line indicates the moving trajectory of the dynamic obstacle (the large blue block). Two motion
plans are shown. In the first row, the planned trajectory veers further left to circumvent the approaching moving obstacle while still being
aware of the other orange static obstacles. In the second row, the dynamic obstacle first moves upwards and then goes downwards. Both
phrases of the obstacle’s motion can potential block the agent’s path, especially when it is going downwards. The planned trajectory first
navigates through the gap between the blue block and the orange block, and then reserves enough space and travel near the bottom of the
environment to prevent any collisions.

B.4 Performance on Concave Obstacles

We construct Maze2D environments with 7 concave obstacles and have shown the qualitative and quantitative results in
Figure 7 and Table 2 in the main paper.

Specficially, in Table 2, we show the motion planning performance on Convex and Concave obstacles side by side, where
RMP (Ratliff et al., 2018) is a traditional potential-based motion planner and MPD is a recent diffusion-based motion
planner (Carvalho et al., 2023). Similar to other experiments, all obstacles are randomly placed and no post-training/fine-
tuning is required. We can see that all methods subject to a certain decline in environments with concave obstacles. Notably,
our learned diffusion potential motion planner can still solve all the problems, surpassing the pure potential-based method
by a margin while requiring significantly less planning time than the state-of-the-art sampling-based planners BIT*. In
Figure 16, we present more qualitative results of RMP, RRT*, BIT*, MPNet, and our method on environments with concave
obstacles.

20

Potential Based Diffusion Motion Planning

BIT*RMP MPNet OursRRT*

Figure 16: Qualitative Performance on Environments with Concave Obstacles. The green star indicates the start pose and the red
star indicates the goal pose. RMP tends to stuck in local minima and fails to reach the goals; RRT* is slow in speed and may reach the
planning time limit in some difficult problems; trajectories by MPNet may occasionally go through obstacles in the environments; our
method is able to generate smooth and low-cost trajectories without collision while being up to 10 times faster than BIT*.

B.5 Performance on Real-World Dataset

Current robotic path planning problem is usually limited to simulation environments and there is no widely-used real-world
benchmark. Since pedestrian trajectory is naturally a kind of demonstrations of human planning, we leverage the ETH/UCY
Dataset to evaluate real-world motion planning capability. Specifically, the entire dataset is comprised of 6 scenes: ETH,
Hotel, Zara01, Zara02, Students01, Students03, where the models are trained on 5 scenes and tested on the held-out scene.
Similar to our simulation environments, the model takes as input the position of start, goal, and other pedestrians, and
outputs a predicted motion plan. The predicted motion plan is desired to be as close as possible to the real human trajectory
and thus we report the Average Displacement Error (ADE) as defined in equation 15:

ADE =

∑
i∈N

∑
t∈T

||qit − q̂it||2

N × T
(15)

where q̂it ∈ R2 is the step t in the ith predicted path and qit is the corresponding ground truth. ADE measure the similarity
between the predicted trajectories and human trajectories. A smaller ADE value indicates the predictions are closer to the
real human behavior.

21

Potential Based Diffusion Motion Planning

ETH Hotel Zara01 Zara02 Students01 Students03

Method ADE ↓ Time ADE Time ADE Time ADE Time ADE Time ADE Time

MPNet 18.11 0.12 28.60 0.11 11.06 0.12 17.22 0.11 10.37 0.12 8.93 0.11
MπNet 37.70 0.26 44.49 0.29 1.14 0.22 13.66 0.23 12.76 0.18 1.54 0.22

Ours 0.94 0.17 5.20 0.17 0.35 0.17 0.38 0.17 0.52 0.17 0.89 0.17

Table 14: Quantitative Results on real-world ETH/UCY Dataset. We adopt the ADE metric to show the similarity between the
predicted motion plans and real human motion trajectories on unseen scenarios. All motion plans are in the world coordinate as given in
the dataset. Our method can mimic human motion behaviors more precisely in most scenes, while both MPNet and MπNet cause drastic
error compared to real human trajectories.

The per-scene quantitative performance is shown in Table 14. Each scene is captured at different time of a day or different
location, resulting in different data distribution. The ADE is relatively smaller in Zara and Students because the model
can see a similar counterpart scene at training, e.g., train set includes Zara01 when tested on Zara02. By contrast, ETH or
Hotel are more unique to other scenes (e.g., contain different scene layout and human behavior patterns) and thus causing
higher evaluation error. As shown in Table 14, MPNet consistently falls short of the ADE, though with slightly faster
speed. We observe that MπNet can produce reasonable motion plans in many cases, but it occasionally predicts random
values, which causes significant deviation from the target and leads to the notbaly larger ADE. Our method demonstrates
better generalizability and stability by precisely mimicing the human trajectories in most held-out scenes. We also notice
that in Hotel, all methods suffer from a severe surge in ADE. Our speculation is that the Hotel has different walkable
world-coordination and in addition, it contains various unseen types of pedestrians motion pattern, such as slowly pacing
people that are chatting or waiting, people stepping on or off the train.

Base Real World Motion Planning. We visualize the motion trajectory planned by our model in Zara02 scene where five
other pedestrians are presented in Figure 17. The planner is trained on the other 5 scenes and evaluated on this held-out
scene. In the given scenario, our agent (highlighted in red) is heading towards the bottom right corner where P2 (yellow) is
on its way. Also, the agent is about to enter an intersection with multiple oncoming pedestrians. In this complex dynamic
scene, the trajectory planned by our model first chooses to follow P2 (shown in T = 10) and adjust its pace to let other
pedestrians pass through first. As shown in in T = 22, our agent successfully crosses the intersection without interrupting
any other pedestrians.

T = 10 T = 22 T = 50

Figure 17: Qualitative Real World Motion Plan, Zara02 Scene. Each star represents a pedestrian on the street. Red indicates the
trajectory planned by our model, while other colors represent 5 pedestrians in the surrounding. Our motion plan smoothly passes through
the intersection without any collision or discontinuity.

22

Potential Based Diffusion Motion Planning

(b)

Ours M𝜋Net

(a)

(c)

(d)

Figure 18: Comparison with MπNet on KUKA. Trajectories of 4 motion planning problems. The large green/pink ball indicates the
location of the end effector of the start/goal state. Our planner can generate smooth long-horizon motion trajectories and avoid being
stuck in local geometry. For example, in (a), our planner is able to select a feasible and shorter path passing through the center of the
workspace to reach the goal state; and in (c), the trajectory by our planner navigates through narrow passage ways without collision, e.g.
travel between the green and purple blocks.

23

Potential Based Diffusion Motion Planning

Trajectory 1, View b Trajectory 2, View b

Trajectory 1, View a Trajectory 2, View a

Figure 19: Flexible Trajectory Morphology. Our method can generate trajectories with various morphological shapes. The large
green/pink ball indicates the location of the end effector of the start/goal state. View a and b represent two different viewing angles of the
same trajectory. In the figure, Trajectory 1 and Trajectory 2 are generated under the same constraints (e.g., start state, goal state, obstacles
locations) but with different starting noise, resulting in different route selection. Trajectory 1 routes through the central narrow passage
between the two purple blocks and arrives the pink ball from above. Trajectory 2 avoids the obstacles by going under the blocks and
finally arrives the same goal state from below.

B.6 Comparison to Training on Multiple Types and Numbers of Obstacles

In this section, we train an additional baseline which learns all data with different numbers and types of obstacles in a single
diffusion potential function. Thus, training this baseline requires additional motion planning demonstrations of various
obstacle combinations. Note that for our proposed compositional motion planning method, models are only trained on a
limited number or type of obstacles, while can effectively generalize to various combinations through composition.

We use Maze2D environment as the testbed. Let s denote obstacle of type 1 and l denote obstacle of type 2, so that s6
indicates 6 obstacles of type 1. We keep all the training and evaluation setups the same as in previous experiments in B.2. In
Table 15, Direct Training refers to a model directly trained on various numbers/types of obstacles, and Composed refers to
the model trained on a fixed number of obstacles and generalizes to novel obstacle combinations via composing potentials in
test-time. For further comparison, we include another baseline Process All Obstacles in the table, which is also trained on a
fixed number of obstacles, but is directly passed in different numbers of obstacles at test-time (This baseline is equivalent to
Diffusion shown in Table 10).

Shown in Table 15, we observe that composing models obtains a comparable performance to the Direct Training and
substantially outperforms Process All Obstacles. Note that the training and evaluating distribution is similar for Direct
Training, while very different for Composed, for example, the training data in Direct Training includes the scenarios with 12
obstacles, while Composed is only trained on 6 obstacles, highlighting the effectiveness of composition for generalization.

24

Potential Based Diffusion Motion Planning

s6 s7 s8 s9 s10

Method Success Check Success Check Success Check Success Check Success Check

Process All Obstacles 100.0 97.0 99.9 126.1 99.2 229.7 95.4 454.8 85.2 769.7
Direct Training 100.0 99.5 100.0 86.3 100.0 95.7 100.0 118.4 99.9 140.5
Composed 100.0 97.0 100.0 102.8 99.9 147.9 99.5 218.8 98.8 308.2

s11 s12 s6 + l1 s6 + l2 s6 + l3

Method Success Check Success Check Success Check Success Check Success Check

Process All Obstacles 71.9 997.0 64.0 1080.1 – – –
Direct Training 98.8 227.4 98.2 264.1 100.0 90.4 99.9 133.8 99.8 172.4
Composed 97.0 393.9 97.0 392.7 99.9 184.2 99.2 304.1 98.9 304.7

Table 15: Quantitative Comparison with Model Directly Trained on various Types/Number of Obstacles. Motion planning
performance on the Maze2D environments with combinations of different types and numbers of obstacles, e.g., s6 + l2 denotes an
environment with six obstacles of type 1 and two obstacles of type 2. In columns with –, Processing All Obstacles baseline is not
applicable as different models are composed. Note that in Direct Training, the model is trained on all 10 obstacle combinations shown
above; while for Composed, we only train a model on environments with six obstacles of type 1 and a model on environments with three
obstacles of type 2.

C Proof of Conditional Independence for Composing Potentials
In Section 3.3, we present a way to generalize to multiple unseen out-of-training-distribution constraints by composing
corresponding potentials. Specifically, in Equation 6, we assume that constraint C1 and C2 are conditional independent. In
this section, we will show how our assumption holds in a general case, and thus the compositionality of our planner can be
achieved as in (Liu et al., 2022).

Assume that two set of constraints are given, C1 = {o1, o2, o3, o4} and C2 = {o3, o4, o5, o6}. Let fCi
(q1:T) denote a

probability density function over trajectories, where positive likelihood is uniformly assigned to the trajectory q1:T if it
satisfies the constraint Ci; otherwise, the likelihood is set to 0. Let Jci denote the set of trajectories that satisfies constraint
Ci. Then, we have

fCi
(q1:T) =

{
ρi if q1:T ∈ Jci

0 if q1:T /∈ Jci

(16)

where ρi is a small constant. Similarly, we can define fC1∪C2
as the probability density function of trajectories that satisfy

both C1 and C2. Clearly, given any trajectory q1:T , the probability density of q1:T is positive if and only if both fC1
(q1:T)

and fC2
(q1:T) are positive. More specifically, we have

fC1∪C2
(q1:T) = γfC1

(q1:T)fC2
(q1:T) (17)

where γ is a constant (note the proportionality constant in the previous equation). We can see that the joint probability
density function equals to the scaled product of fC1 and fC2 . While the above equation doesn’t indicate independence,
sampling using the score function for the left side of the equation is the same as sampling from the summed score function
for the right side of the equation, because the score function is the gradient of the log probability and is invariant to the
constant multiplier. Therefore, the constant γ here will not affect the test-time sampling process and the proposed procedure
of composing potentials for generalization can be achieved in theory.

25

